close

首先要先說明

因這項研究報告內容截至目前尚未有人體實驗以及臨床實驗

提供這份資訊僅供病友們參考以了解現階段進度。

因是英文報告

在此先提供病友的初步翻譯

接著提供google翻譯

最後是英文原文報告。



病友幫忙的粗略翻譯如下:

先前的研究證明,使用雷帕黴素(Rapamycin)和辛伐他汀(simvastatin)的組合,

試用在一個小鼠中可以防止腫瘤再次發生,他汀類藥物(stains)控制膽固醇的藥物。

(但是此實驗的老鼠TSC2突變的腫瘤並不是長在肺部腫瘤,但在從別的動物移植培養成的)

總之,全篇的意思是說現有的兩種藥物antibiotic抗生素(Rapamycin雷帕梅素)

和statin他汀類藥物(控制膽固醇的藥物simvastatin) 試用在老鼠上的結果有可能幫助治癒腫瘤,甚至是可能扭轉Lam的徵狀。

文章中還有提到 光使用rapamycin雷帕梅素僅能抑制細胞腫瘤生長,

卻不能促使細胞死亡,一但停止服用藥物,腫瘤細胞會持續生長。

目前這實驗並沒有經過人體實驗,更沒有臨床實驗,所以研究學者也不建議向醫生索取處方籤。

即使這兩種藥物都是市面上通過FDA食品藥物管理局審合的現有的用藥。




google翻譯如下:

衰弱的肺疾病淋巴管平滑肌瘤病的小鼠模型的提出可能的治療方案


LAM,為肺淋巴管平滑肌瘤病,影響約1萬育齡婦女,其特點是由增生的平滑肌細胞在肺,肺組織的破壞,淋巴管的生長。這種疾病是由於其中的兩個基因TSC1或TSC2失活,但是到目前為止,還沒有動物模型已經能夠複製這些基因突變在人類中產生的病理特徵。 

現在,佩雷爾曼醫學院的研究人員在美國賓夕法尼亞大學科學轉化醫學林一個新的小鼠模型,並複製這些功能,生產的方式來研究疾病的病因和開發藥物的報告。更重要的是,2現成的藥物-的抗生素和他汀類藥物-可能幫助治療,並可能反向,症狀。 

埃琳娜宮察洛娃,博士,研究助理教授,醫學和維拉Krymskaya,博士,聯營公司教授醫學,肺,過敏症和重症監護科,在賓夕法尼亞大學,領導了這項研究。該小組收集TSC2基因突變的細胞在小鼠體內形成腫瘤自發性腎。然後,他們的“敏化”這些細胞 與非致敏TSC2缺陷的細胞,不同的是,通過他們成長成腫瘤免疫功能低下的小鼠,切除的腫瘤,和他們的細胞重新注入到另一組免疫小鼠的尾靜脈。

致敏細胞產生多個肺結節由平滑肌樣細胞,與人類的疾病,以及破壞肺組織和淋巴管生成。這些結節還展出了一種酶的活性增強基質金屬蛋白酶和彈性蛋白的流失,這意味著一個潛在的機制,導致組織損傷

這項研究還表明,對於第一次破壞肺組織中林TSC2不足引起的肺部病變。 TSC1和TSC2調節的mTOR(雷帕黴素靶蛋白)的途徑。作為一個結果,已經使用的抗生素雷帕黴素治療的經肺LAM。但,說宮察洛娃,該藥物似乎只阻止細胞的生長,誘導細胞死亡。

當雷帕黴素,病情的發展。“這表明我們的東西都需要充分治療的疾病,”她說, 事實證明,其他的東西可能是他汀類藥物, 他汀類藥物控制膽固醇的藥物是眾所周知的。但是,他們也可以抑制信號的蛋白質稱為GTP酶,誘導細胞死亡。

先前的研究表明,使用雷帕黴素和辛伐他汀的組合可以防止再次發生在一個小鼠模型中,TSC2突變的腫瘤還沒有長在肺部腫瘤,但在側面的動物。 目前的研究擴展了觀察表明,雷帕黴素加辛伐他汀能抑制增長的TSC2基因突變的腫瘤在小鼠肺,以及由此產生的組織損傷。 

但也許更重要的是,從臨床角度的視圖,應用的藥物後肺結節的發展和組織的損傷實際上可以逆轉組織損傷。 “這是我堅定的信念,如果你想提出的治療方案,你需要扭轉或減輕現有的疾病。

預防是不夠的,說:“宮察洛娃。 在早先的研究中,雷帕黴素在這項研究中,似乎是抑制細胞生長的-它阻止細胞的生長;辛伐他汀誘導細胞死亡,這兩種藥物塊基質金屬蛋白酶。這兩種藥物被FDA批准和商業化。

但前肺LAM患者稱他們的醫生處方中,宮察洛娃強調,結果是在老鼠身上,而不是人類。臨床試驗是在需要測試的有效性,這種藥物的組合,患者。迄今為止,還沒有這樣的試驗已經開始。 “我希望它能夠在不久的將來,”她說。 

其他合作作者從賓夕法尼亞包括德米特里·岡察洛夫,Melane菲潤巴赫,艾琳Khavin,Blerina DUCKA,安吉拉Haczku,和史蒂芬 研究由國家心臟,肺和血液研究所(RO1HL71106,RO1HL090829,RO1HL114085),Abramson癌症中心的核心支援津貼(NIH P130-CA-016520-34,P30ES013508,RO1AI072197,RC1ES018505),美國肺臟阿爾貝爾達。協會(CI-9813-N),LAM基金會和奧克蘭醫學研究基金會。




以下為英文原文報告:

Mouse Model of Debilitating Lung Disease Lymphangioleiomyomatosis 

Suggests Potential Treatment Regimen

 
 
 
 
 

LAM, short for pulmonary lymphangioleiomyomatosis, affects about 1 in 10,000 women of childbearing age and is characterized by proliferation of smooth muscle-like cells in the lung, destruction of lung tissue, and growth of lymphatic vessels. The disease is caused by inactivation of either of two genes, TSC1 or TSC2, but to date no animal model has been able to replicate the pathologic features those mutations produce in humans.

Now, researchers at the Perelman School of Medicine at the University of Pennsylvania report in Science Translational Medicine a new mouse model of LAM that does replicate those features, producing a way to study disease etiology and develop drugs. What’s more, two readily available drugs – an antibiotic and a statin – may help to treat, and maybe reverse, symptoms.

Elena Goncharova, PhD, research assistant professor of Medicine, and Vera Krymskaya, PhD, associate professor of Medicine, Pulmonary, Allergy, and Critical Care Division at Penn, led the study. The team collected TSC2-mutant cells from spontaneous kidney tumors formed in mice. They then “sensitized” those cells by growing them into tumors in immunocompromised mice, excising those tumors, and reinjecting their cells into the tail veins of another set of immunocompromised mice.

Unlike non-sensitized TSC2-deficient cells, the sensitized cells produced multiple lung nodules comprised of smooth muscle-like cells, as in the human disease, as well as destruction of lung tissue and lymphangiogenesis. These nodules also exhibited enhanced activity of an enzyme called matrix metalloproteinase and the loss of elastin, suggesting a potential mechanism for causing that tissue damage. The study also demonstrated for the first time that destruction of lung tissue in LAM is caused by TSC2 deficiency in lung lesions.

TSC1 and TSC2 regulate the mTOR (mammalian target of rapamycin) pathway. As a result, the antibiotic rapamycin is already used therapeutically for pulmonary LAM. But, says Goncharova, the drug appears only to halt cell growth, not induce cell death. When rapamycin is removed, disease progresses. “That showed us that something else was needed to fully treat the disease,” she says.

As it turns out, that something else could be a statin.

Statins are well known cholesterol-controlling medications. But they also can inhibit signaling proteins called GTPases, inducing cell death. An earlier study using rapamycin and simvastatin demonstrated that the combination could prevent tumor reoccurrence in a mouse model in which TSC2-mutant tumors were not grown in the lungs, but in the flanks of the animal.

The current study expands that observation, demonstrating that rapamycin plus simvastatin can inhibit the growth of TSC2-mutant tumors in the mouse lung, as well as the resulting tissue damage.

But perhaps more importantly, from a clinical point-of-view, application of the drugs after development of lung nodules and tissue damage could actually reverse tissue damage.

“It’s my strong belief that if you want to propose treatment options, you need to reverse or attenuate existing disease. Prevention is not enough,” says Goncharova.

As in the earlier study, rapamycin in this study appears to be cytostatic – it halts cell growth; simvastatin induces cell death, and both drugs block matrix metalloproteinases as well. Both drugs are FDA-approved and commercially available.

But before pulmonary LAM patients call their physicians for a prescription, Goncharova stresses that the results were in mice, not humans. Clinical trials are required to test the efficacy of this drug combination in patients. To date, no such trials have been initiated.

“I hope it will be done in the near future,” she says.

Other co-authors from Penn include Dmitry Goncharov, Melane Fehrenbach, Irene Khavin, Blerina Ducka, Angela Haczku, and Steven Albelda.

The study was supported by the National Heart, Lung, and Blood Institute (RO1HL71106, RO1HL090829, RO1HL114085), Abramson Cancer Center Core Support Grant (NIH P130-CA-016520-34, P30ES013508, RO1AI072197, RC1ES018505), the American Lung Association (CI-9813-N), the LAM Foundation, and the Auckland Medical Research Foundation.

Science news source: 

University of Pennsylvania



arrow
arrow
    全站熱搜

    LAM愛者 發表在 痞客邦 留言(0) 人氣()